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ABSTRACT
The discipline of informatics emerged from the need to translate biomedical research into evidence-
based healthcare protocols and policy.  Materials science informatics is rooted in an analogous need to
“translate” physical sciences research and discoveries into materials-based solutions to address a broad
range of issues and challenges for business, government and the environment.

Ontologies and databases are key elements of translational architectures and therefore are fundamental
tools of the practice of informatics. Databases are tools for engineering data and information, while
ontologies are tools for engineering knowledge and utility.  Since knowledge and utility are the core
objectives of informatics, correctly understanding and utilizing ontologies is critical to the development
of effective materials informatics programs and tools.

Rooted in philosophy, the term ontology appears most frequently today in connection with semantic
web technology, where it refers to vocabularies used by inference engines to interpret human use of
language.  Materials science ontologies need to capture the scientific context of the defined concepts to
support modeling and prediction of multidimensional structure-property relationships in variable
environments and applications.

Addressing the complexity of materials science ontologies requires a significant departure from
traditional database and semantic web ontology approaches, including the use of neural networks that
are capable of implementing methods for modeling context, relevance, complex systems and human
expertise.  Pioneering efforts in this space include the Knowledge Engineering for Nanoinformatics Pilot
(KENI) launched by the Nanoinformatics Society in 2010, and a collaborative Materials Genome
Modeling Methodology initiative led by Iowa State University and initiated in 2011.

INTRODUCTION
Regardless of which definition we prefer, informatics is about transforming data and information into
knowledge and utility.  The discipline of informatics emerged in the biomedical sciences as a tool of
translational medicine, the quest to transform the outcomes of basic research into generally available
repositories of medical knowledge.  These repositories would in turn be used by medical schools, drug
manufacturers and health systems vendors to drive the development of methods and technology.  It
was hoped that this “translation” architecture would become a platform for evidence-based healthcare
protocols and policies. Advances in genomics research, particularly the Human Genome Mapping
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project, created great expectations for translational medicine.  According to the National Venture
Capital Association (2011) these expectations drove bio-genome related research investments to about
100 million dollars in 2000, but then the number dropped by about 80% by 2002 and stayed at
approximately that level for the remainder of the decade.

The gap between the expectations and the results finds a parallel in the outcomes from bioinformatics
initiatives, where even the foundational programs have made limited strides toward the driving purpose
of utility, as illustrated below1:

The relative paucity of results cited the presentation above is relevant to materials scientists and
informatics practitioners because at the time of this writing the Materials Genome Initiative promoted
by the White House Office of Science and Technology Policy has been driving activities and expectations
that are analogous to the bio-genomics experience. It is imperative, therefore, for materials informatics
program architects and tools developers to leverage the experience of translational medicine to identify
the critical issues and success factors needed to create solutions and platforms that effectively translate
the outcomes of materials science research into knowledge repositories that are useful to product
innovators and application engineers.

Key elements of a translational infrastructure are databases and ontologies, and although these terms
frequently appear together (hence this chapter title), they represent two distinct topics with few
similarities between them and many differences. Understanding the differences between databases
and ontologies is imperative to the development of an effective translational architecture. The core
distinction is purpose:

 Databases enable acquisition, storage, management and sharing of data and information
 Ontologies enable curation, storage, management and sharing of knowledge within contextual

structures that support utility

Information is data in a useful structure.  Since data and information are acquired, managed and stored
in databases the first two curves in the diagram above represent the state of the database domain.  The

1 Center for Cancer Genomics and Computational Biology - Van Andel Research Institute – December 2011
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exponential growth in data and information is not surprising since it is based on mature science and
technology. As evidenced by the graph, a database focused approach is the simplest and shortest path
to measurable outcomes, but not necessarily to valuable ones.

The legend below the graph notes that bridging the gap requires abstraction.   As demonstrated by the
ground-breaking predictive capabilities of the periodic table, the effectiveness of the transformations
from information to knowledge is dependent on the adequacy and correctness of the abstraction
methods, rather than the volume of available data or the speed of the search. Effective abstraction is a
daunting challenge, especially in a computational environment, and will be discussed further in the
Ontologies section that follows.

Knowledge is information in a useful context. Capturing, curating and storing knowledge is the objective
of a diverse array of ontology engineering initiatives, but as the graph clearly illustrates, the limited
progress made thus far in bridging the gap between computed information and knowledge is the
primary obstacle to utility. A contributing factor to the gap is the dominance of semantic web
ontologies among the aforementioned initiatives because they focus on standardizing vocabularies
rather than the scientific context of the defined concepts.

In view of all the above, we will give primary consideration to ontologies, discussing the informatics-
focused use of ontologies, the associated challenges and some sample methods that have been
developed in various disciplines to address the challenges that can be leveraged by materials science.
Thereafter we will review the roles and limitations of databases, with a special emphasis on the “big
data" environment with is gaining the lion’s share of today’s information mind space. In conclusion, we
will review some of the pioneering initiatives that are utilizing the approaches and methods that will be
discussed in this chapter, including a materials science example.

ONTOLOGIES
Coined by Aristotle to name the search to understand the nature of things, the term “ontology” resided
primarily in the domain of philosophy until the emergence of the semantic web technology.  The
semantic web relies heavily on structured vocabularies, commonly referred to as ontologies, to define
concepts and relationships. These ontologies are usually application-focused, defining the terms and
conceptual structure relationships that the application will need to properly interpret the natural
language user inputs, with the fields of medicine and pharmacology leading the way in the early years in
terms of number of initiatives and the allocation of funds. The rapidly growing role of search engines
and social media sites and applications has expanded the range of players, with marketing initiatives
emerging as the dominant divers of the new growth in semantic web ontology projects.

Standards for semantic web technologies and methods are developed by w3.org. As the W3C website
explains2, “There is no clear division between what is referred to as “vocabularies” and “ontologies”. The
trend is to use the word “ontology” for more complex, and possibly quite formal collection of terms,

2 http://www.w3.org/standards/semanticweb/ontology
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whereas “vocabulary” is used when such strict formalism is not necessarily used or only in a very loose
sense. Vocabularies are the basic building blocks for inference techniques on the Semantic Web.”

This lack of clear distinction has not been a serious concern for the semantic web community, but for
materials scientists it is a profound issue with far reaching consequences, not the least of which is the
risk of failure to maintain a distinction between that which is learned from evidence (science) and that
which is decided upon by consensus (negotiated or voted standards). Materials science informatics
requires the use of both ontologies and vocabularies to engineer solutions to grow the body of useful
knowledge related to materials and their characteristics. However, both ontologies and vocabularies
must fulfill one or more of an array of precisely defined roles, and each role needs to be enabled by
appropriately optimized architectures supported by technologies that are capable of implementing the
required architectures.

Ontologies, Vocabularies and Materials Science Informatics
As evidenced by the White House Office of Science and Technology Policy Materials Genome Initiative,
the development of economic opportunities and efforts to address environmental and health issues that
could be solved or attenuated with new materials are driving interest and investment in the field.  To
align with these demands, the purpose of materials science informatics ontologies can be defined as a
set of three concrete objectives:

1. Translate data and information into knowledge that is useful, not only to materials scientists,
but also to application engineers, environmentalists, regulators and other users

2. Curate the knowledge base to maintain alignment with emerging scientific research and
discovery, as well as with application development or engineering innovation across the
relevant disciplines and industries

3. Present the knowledge in a flexible architecture that supports tailoring the outputs based on
multiple criteria to make the utility and value correctly understandable to each user group

Information is data that is captured and stored in a useful structure, and knowledge is information that
is modeled and presented in a useful context.  Therefore, translating materials data and information
into useful knowledge requires defining and modeling the scientific context of a library of concepts to
support the exploration and prediction of multidimensional structure-property relationships in variable
environments and applications. The scientific context of a concept should certainly include the
definition and classification attributes of the concepts (vocabularies and taxonomies), but achieving the
desired prediction capabilities requires modeling and quantifying structural and behavioral attributes, as
well as the potential combinatorial interactions between and across the concepts and attributes.
Furthermore, to enable model-based experimentation and discovery, the ontology must reside in an
architecture that supports the coexistence of an expanding array of models, each of which behaves as
an independent agent, supported by technologies that enable hitherto unknown or at least unspecified
chaotic and stochastic interactions between and across the models.

The above described computational environment is most likely unfamiliar to many scientists and
informatics practitioners because the tools and systems with which they may be acquainted are



PRE-PUBLICATION DRAFT – 11/30/12

architected around data and information.  However, all will intuitively recognize that the conceptual
description of the model-based experimentation and discovery ontology architecture is representative
of the real world problems with which we are wrestling. Let’s consider a drug safety example.

The FDA Center for Drug Evaluation and Research requires the calculation of embedded uncertainty in
various models as part of the risk assessment process3. CDER will consider whether there is a
biologically plausible explanation for the association of the drug and the safety signal, based on what is
known from systems biology and the drug’s pharmacology. Their web site states: “The more biologically
plausible a risk is the greater consideration will be made to classifying a safety issue as a priority. We
must assume three models to analyze uncertainty: 1) A dynamical model that predicts the consequences
for specific parameters, 2) a hierarchical model that describes population variability between individuals
and 3) a measurement model that describes how observations, including errors, were made. We can be
uncertain about any of the three models as well as the parameters that describe those models.”

In the real world the various models created independently to support the analysis are interdependent
at both the model and attribute levels.   This is an example of systemic complexity, which will be
discussed further in the Challenges and Methods section below.  However, the capability to model the
complex interactions implicit in the evaluation description by the FDA is fundamental to translating real
world data and information into real world knowledge.

Since in theory computer systems are supposed to model the real world, the fact that familiar
computational scenarios are quite dissimilar from familiar real world scenarios may provide a clue as to
why the gap between information and knowledge continues to grow.  The science and business of
informatics need to supplement the existing data and information focused computing environments
with knowledge and utility focused computing architectures and technologies if we are to begin
narrowing the widening gap.

Curating the knowledge base has its own special needs, including but not limited to:

 A registry of source databases containing research data, standardized vocabularies and other
relevant content needs to be developed and maintained.

 Connections and / or update processes need to be developed between the source databases
and the ontology architecture.

 Updates, analysis, review, and implementation processes need to be designed; and automated
to the extent resources and technology permit.

In the first bullet we have an example of a precisely defined role for multiple vocabularies.  In this use
case - curating your knowledge base - the vocabularies are being developed, curated and stored outside
your materials science informatics ontology architecture, and in most cases they are not materials
science vocabularies.  However since no science exists in a vacuum, even when a researcher’s interests
are very narrowly focused, the scientific context of the concepts modeled in your ontology will include
and are dependent upon components of knowledge from other disciplines.

3 http://www.fda.gov/Drugs/DrugSafety/default.htm
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Let’s consider the example of the development of nanomaterials for use in drug delivery systems.  The
physico-chemical characterization context will include information that resides in physics and chemistry
databases. The pharmacological characterization context will include information that resides in
pharmaceutical, biomedical, and biochemical databases.  In each relevant database the information is
defined and classified using discipline-specific vocabularies and taxonomies.  The mappings between the
potentially relevant vocabularies and the core vocabulary of the materials science ontology need to be
maintained to support the processes described in the second and third bullets.

Utility requires knowledge to be presented in a generally available form that enables its potential users
to find relevant content, correctly interpret the content, and utilize it effectively. While there are many
potential presentation approaches, a critical element of delivering unambiguous tailored outputs is the
inclusion of the vocabularies normally used by the user groups (another example of a specific role for
vocabularies) and mapping them to the materials science vocabulary at the core of the ontology.  The
navigation use cases would allow the users to intuitively identify their disciplinary and problem domain
parameters because they are navigating in their own language, and the internal engine would then
perform the relevance computations required to deliver the tailored results.

It is clear that attempting to deliver on the above objectives is not without its significant challenges, and
therefore easy to see why the gap between information stores and useful knowledge continues to grow.

The goal, however, is not out of reach.  The first step is defining an appropriate solution architecture, as
in the example below from the Knowledge Engineering for Nanoinformatics Pilot4 which will be
discussed later in this chapter:

The major components of the Knowledge Engine support the core abstractions of the content domains.
The components, represented by the yellow numbers on the gears, are:

1. Scientific Ontology – contextually modeled concepts, attributes and interactions
2. Vocabularies and Mappings – core and related based on utility scope
3. Analysis, Experimentation and Presentation Rules – including user navigation use cases

4 www.nanoinformatics.org
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The legend below the gap between information and knowledge graph in the Introduction section
presents abstraction as a critical requirement for the development of solutions to bridge that gap. The
above architecture abstracts the content simultaneously by nature (i.e. knowledge, terminology and
rules) and by purpose (i.e. to compute context, to translate meaning and to enable use cases). The
result not only maintains the distinction between the science which is learned from evidence and the
vocabularies which are decided by consensus, but also keeps both content groups segregated from the
implementation methodologies which will vary according to the specific project requirements.

The evolution of this abstraction approach is further discussed in the Recent Initiatives section below,
which also includes details of a sample materials science implementation of the architecture. The
section that follows will discuss the more significant of the computational challenges, and will present
examples of emerging methods that have been leveraged to address them. Since most of the described
methods have been developed outside of materials science informatics, the examples have been
selected based on what seems to illustrate the approach in the most generic way.  The aim is to facilitate
understanding of the underlying principles that can then be applied in materials science informatics
tools and applications.

Challenges and Methods
The scale and persistence of the gap between information stores and knowledge bases provides
evidence that the obstacles that need to be overcome are not trivial. The challenges presented here to
bridging the gap are not exhaustive by any means, since there are social, academic, economic and other
issues that are clearly outside the scope of this work.

In the context of informatics knowledge acquisition, curating and sharing are the primary objectives.
Therefore, the primary perspective we will use to analyze the challenges and solution methods
associated with bridging the gap is that of knowledge engineering.  This discipline, which is rooted in the
integration of computer science innovation with cognitive science discoveries, leverages proven
engineering methodologies to integrate knowledge into computer systems in order to solve complex
problems normally requiring a high level of human expertise. It is an emerging discipline with most
references to it occurring within academic contexts, but there have been practical applications, as
shown in some of the examples and in the Recent Initiatives section at the conclusion of this chapter.

From the knowledge engineering perspective, there are three primary challenges:

1. Complexity
2. Relevance computation
3. Capturing human expertise as a computable asset

We will discuss each one individually, and consider methods that have had at least some measure of
success in dealing with these issues.

Complexity
In the context of building computational solutions the term “complexity” is frequently, although not
always precisely, used in three common senses:
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1. Mathematical complexity which from a computer science perspective refers to the rules that
define the way the scaling of data drives the scaling of computational resource requirements.
Mathematical complexity is directly related to the volume of the data, and this is a dominant
topic today across disciplines and domains due to the publicity and expectations surrounding Big
Data processing platforms.  We will review the current state of this technology, including what it
can and cannot do for materials science informatics, in the Big Data subsection of the Databases
section below.

2. Design complexity from a solution architecture perspective, which when used precisely refers to
the challenges associated with implementing and scaling highly flexible and dynamic processes.
When used imprecisely, especially as a criticism of a computational approach, the term
complexity usually refers to complications, the errors and inefficiencies created when systems
and/or components are integrated and patched together ad nauseum without due attention to
problem analysis or solution architecture and reengineering.

3. Systemic complexity from a real-world modeling perspective, which refers to the chaotic and
stochastic interactions within, between, and across physical, biological and social systems.
Systemic complexity has received some recent notoriety in technology circles due to the
significance of its role in the global financial crisis.

All three issues are important to the goal of transforming information into knowledge, and all these
issues are addressed by the approaches and methods being utilized and under development within the
knowledge engineering discipline. Modeling systemic complexity beyond the most limited scope,
however, includes the challenges associated with mathematical and design complexity, and since
systemic complexity is the most relevant to materials science ontology engineering we will review the
complexity issue from the systemic perspective.

Scientists working to model environmental and biological systems are very cognizant of the challenges,
but the commonly used computational tools and technologies are very limited when facing scaling
systemic complexity, resulting in the creation of a diverse array of knowledge silos, each limited by the
scalability of the supporting technology.  While recognizable utility can be achieved in the
implementation of educational use cases such as Wolfram Alpha5 and the NanoHub6, the lack of
dynamic interaction between the silos is a significant obstacle to tackling broader and more critical
research and discovery objectives. Even when they do their own coding, scientists understandably
depend on technology vendors to provide the tools that they need, and the awareness of the limitations
of generally used tools to address scaling systemic complexity is just beginning to emerge within the
computing vendor community.

To assist vendors in grasping this error, and the significance of the systemic complexity management
issue, DARPA launched its “Real-World Reasoning” project in 2005 (internally called “Get Real”).  The
report in COMPUTERWORLD begins7:

5 www.wolframalpha.com
6 www.nanohub.org
7 Gary H. Anthes DECEMBER 05, 2005 (COMPUTERWORLD)
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December 5, 2005 (COMPUTERWORLD) – It is surely one of the more mind-blowing
PowerPoint slides ever created.  It’s a graph, and one of the smallest numbers, near the
bottom of the vertical axis, is 1017, the number of seconds from now until the sun burns
up.  Then comes 1047, the number of atoms on Earth.  After that, the numbers get really
big, topping the scale at 10301,020.

This graph, from the Defense Advanced Research Projects Agency, shows the
exponential growth in possible outcomes for a range of activities, from a simple car
engine diagnosis with 100 variables to war gaming with 1 million variables (that’s what
the 10301,020 represents).

The point DARPA is trying to make in explaining the Real-World Reasoning Project is that
computers will never be able to exhaustively examine the possible outcomes of complex
activities, any more than a roomful of monkeys with typewriters would ever be able to
re-create the works of Shakespeare.

In the real world, human judgment and expertise rule when problem domains are fraught with
significant complexity or uncertainty, and whether the organizations involved are government, business,
military, or altruistic the highest authority and compensation are given to those perceived as effective
decision makers.  After receiving a DARPA “Real World Reasoning” grant in 2008 to begin research in
this area, IBM acknowledged, “Today's computers are powerful number crunchers but don't do a good
job of dealing with ambiguities or integrating information from multiple sources into a holistic picture of
an event.”8

The combinatorial complexity issue targeted by the DARPA initiative is driving IBM and five academic
partners, who jointly won the funding, to develop a neural chip9, abandoning the traditional silicon chip
design for a more biomimetic architecture.  The goal is not just faster processing, but also the scaling of
current capacity for combinatorial computation.  Researchers at MIT have taken a different approach,
seeking to mimic the brain’s plasticity by modeling the activity of a single synapse using about 400
transistors10.  While both efforts are significant from a research perspective, for technology managers
charged with enabling advanced analytics capabilities within their organizations, or for scientists and
engineers charged with delivering the next generation of informatics platforms, the research initiatives
described above serve only to emphasize the challenges ahead. Not the least of the challenges is
thinking about what kind of data and information structures will be required to support biomimetic
processing architectures and technologies.

Systemic Complexity Modeling Methods
Since the consensus from the above described initiatives is that a biomimetic approach is required to
model systemic complexity, it is reasonable to look to cognitive science and biologically inspired design
methods for insight into how real world reasoning would represent complex systems. In this subsection

8 InformationWeek November 20, 2008  IBM Eyes Computers That Mimic The Brain
9 8/24/2011 http://www.computerworld.com/s/article/print/9219288/IBM_brings_brain_power_to_exp...
10 http://www.mit.edu/newsoffice/2011/brain-chip-1115.html
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we focus on four principal methods for modeling systemic complexity – cognitive architectures,
capturing and automating elements of human expertise, relevance computation and using “Models as
Agents”, an agent-based modeling approach in which individual models and their components are
behaving as independent agents capable of chaotic and stochastic behaviors.

Cognitive Architectures
The development and use of cognitive architectures is about leveraging the insights that have been
enabled by brain scanning technology about the information architecture in the human brain. From a
cognitive science perspective, the requirements for effective representation for complex domains are
well understood, and they are11:

1. Integrate levels of abstraction – this may seem like an obvious requirement, but it isn’t
2. Combine globally homogeneous with locally heterogeneous representation of concepts
3. Integrate alternative perspectives of the domain
4. Support malleable manipulation of expressions
5. Have compact procedures
6. Have uniform procedures

To integrate levels of abstraction the modeling team needs to first identify all the levels of abstraction
within the scope of the domain and make sure that they are precisely distinguished and represented.
For example, it may be intuitive to identify systems and structures within the domain as subdomains,
but behavioral categories across domains need to be linked to the properties within the domains with
which they interact.

An example of combining globally homogeneous with locally heterogeneous representation of
concepts is object oriented inheritance, which is a useful tool in modeling systems.  The aim is to define
a simple concept structure into which all the members of your highest level of abstraction can fit
comfortably.  If this goal continues to be elusive after serious effort, then there may be higher levels of
abstraction in your domain than the ones with which you are working.

Integrating alternative perspectives of the domain means creating a context representation
architecture which allows concepts to be interpreted differently and model elements to behave
differently based on contextual drivers and parameters.  The design and construction of context engines
is not trivial, and a critical success factor is a sufficiently robust assumptions layer that is aggregated
dynamically from properties and their values across elements of the domain, as well as including
external interaction scenarios.

The capability to support malleable manipulation of expressions is required so that the context
architecture can be flexible, since methods and values in expressions will need to vary according to the
driving scenario. Some of the specific methods for achieving this type of flexibility are:

 Include variables in the appropriate expressions that are dependent on your data and updates

11 P.C.-H. Cheng /Cognitive Science 26 (2002) 685–736
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 Include calculated variables in the appropriate expressions that are outputs of other expressions
in your rules engine or procedures

 Create expression libraries that are available for inclusion into your procedures based on the
computed context

 Enable users to make contextual inputs and decisions at run time

Having compact procedures supports the creation of a procedure library that is managed by the context
engine and therefore allows the procedures to be assembled and ordered dynamically as required by
the driving process outputs and user selections at run time.

Having uniform procedures supports the use of engineering techniques to optimize the sharing and
reuse of procedures and expressions.  Using this approach enables more precise and streamlined
abstraction of the algorithmic architecture, in addition to supporting improved performance and
simplified maintenance.

A core principle of cognitive architecture is that human knowledge is abstracted into three fundamental
categories – semantic, episodic and procedural. To advance usability, which requires aligning
computation with user mental models, each concept class in our scientific ontology should have a
cognitive state (Semantic, Episodic or Procedural). For example, the concept “inhibition” could apply to:

1. The effect of a particle on its target, or the environment on the particle – semantic
2. Experimental data, or patent prior art – episodic
3. A biological pathway, or a lab process – procedural

Each unique combination of keyword and cognitive state is a distinct class.  The cognitive state of the
concept class is defined at build time, and would then become an input to the concept relevance
computation discussed below.

Human Expertise
Capturing human expertise requires a significant departure from current tools and technical approaches
that are labeled “knowledge management,” due to the significant differences between the problem-
solving approaches of experts and those of educated novices.

Studies of syntactic, semantic, schematic, and strategic differences in problem analysis and solution
approaches between recent graduates with advanced degrees and recognized experts in physics,
computer science and medicine revealed the following common, distinguishing characteristics of
experts12:

1. Rapidly and effortlessly recognize issues and anomalies
2. Work with mental models that connect observations and input
3. Manipulate large clusters of information based on context
4. Analyze and plan abstractly and consider many alternatives

12 Mayer, R., 1992, Thinking, Problem Solving, Cognition, Freeman
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As an example, human experts capable of playing blind chess (without looking at physical pieces on a
board) do not necessarily have a superior memory (like a computer), but have a much more extensive
repository of scenarios and associated rules that fill in what “must be” based on relevant context
anchors13.

The cognitive behavior of professional novices in each of the four above areas was the inverse.
Therefore the experts’ cognitive behavior requires an abstract modeling environment to define their
problem solving context, as well as the ability to specify discrete, coexisting scenarios associated with
the context.  This captured expertise can then be delivered to novices to help solve problems.

Modeling the cognitive behavior of experts requires software that does not limit experts to the
application designers’ view of the world.  They need the power to define qualitative, flexible contexts, as
well as frameworks and rules for how information is interpreted as the contexts are evolved.  Traditional
software and data architecture cannot meet this challenge because the highly constrained data
structures and deterministic use case driven algorithms do not have the capability to implement the
cognitive architectures described in the above section, or the relevance computation requirements that
are discussed below. The key technical reasons for these limitations will be considered in the Databases
section later in the chapter.

Since a human user needs to act on the output, the utility of the knowledge is dependent on the
alignment of the output with the user’s mental models, especially when the objectives are decision
quality and learning. Cognitive research14 has demonstrated that:

• the definition of the learning objective is not based solely on the accuracy of knowledge, but
also on the subjectively and contextually determined utility of knowledge being acquired

• humans entertain multiple hypotheses and learn not only by modifying a single existing
hypothesis but also by combining a set of hypotheses

The conclusions above are intuitive and are as applicable to decisions as to learning, but the issue of
utility is frequently ignored and is a major cause of the too common disconnect between user needs and
the functionality of delivered systems.

Relevance Computation
Relevance analysis and computation addresses combinatorial complexity because it is the foundation of
real-world reasoning.  For decades, cognitive researchers have understood that flexible mental models
created by contextual and subjective relevance processes enable the superior analytical and decision
capabilities of experts in comparison with those of educated novices15.  Additionally, recent research has
shown that when asked to sort descriptions of real-world phenomena, novice students of the physical

13 Reinhold Behringer. "Augmented Reality." In Allen Kent and James G. Williams, eds., Encyclopedia of Computer Science and
Technology, Vol. 45, No. 30, pp. 45-57. Marcel Dekker, Inc., 2001
14 Toshihiko Matsuka et al, Neurocomputing - August 2008
15 Mayer, R., 1992, Thinking, Problem Solving, Cognition, Freeman
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sciences sorted primarily by the domain, whereas experts sorted primarily by causal category16,
emphasizing that effective relevance analysis integrates procedural and episodic knowledge with the
semantic approach to which the domain categorization is limited. As a result we can see from another
perspective why a strictly semantic ontology is inadequate for capturing scientific knowledge, since the
causal relationships are so critical for the understanding and predictability of behaviors and interactions.

The conclusions above are intuitive and are as applicable to decisions as to learning, but as mentioned
earlier, the issue of utility is frequently ignored and is a major cause of the too common disconnect
between user needs and the functionality of delivered systems.  Consequently, addressing the challenge
of utility includes enabling the following technological capabilities:

 a contextual architecture that supports the definition and simultaneous interaction of multiple
hypotheses and abstraction methods

 a relevance computation engine that can link the properties and attributes of the hypotheses to
data across domains and levels of abstraction

 analysis and maintenance processes across the layers of context and hypothesis that are driven
by a combination of information updates, computations, and dynamic input from curators or
users

A contextual architecture clearly needs to be a multidimensional structure which should be a core
element of the design of the scientific ontology.  The dimensions could include, but are not limited to:

 Domain
 Problem
 Scope
 Scale
 Properties
 Property Values
 Methods
 Behaviors
 Formalisms
 Models

The construction of a contextual architecture may seem to be a threat to the host system’s capacity to
handle the algorithmic complexity because the effort will capture significant complexity in the modeled
environment.  Staged processing will offset the threat by computing in stages and at each stage filtering
for relevance, and only computing those paths found to be relevant, thus minimizing the computing
resources required. The more precise and granular the context architecture, the more efficiency will be
gained by staged relevance computation, resulting in a synergistic relationship between the structural
and algorithmic relevance methods.

Models as Agents
To align with real world complexity modeling requirements and methods described above, knowledge
engineering solutions need to be able to receive expert input in a way that captures their mental models

16 B. M. Rottman et al, 2011,  Causal Systems Categories: Differences in Novice and Expert Categorizations of Causal
Phenomena
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of relevance within and across target semantic domains, together with their contextual and subjective
associations with procedural components and episodic (historic) data.  The captured mental models
acting as agents in deterministic and stochastic interactions form the basis for real-world reasoning
networks that can assist with the key challenges described.

In the Models as Agents approach, data points are modeled as a neural network of interacting systems,
structures and scenarios, as well as their attributes and behaviors.  The scenarios drive relevance
computation, and:

• are composed of semantic, procedural and/or episodic elements
• can be situated across systems and structures (scenarios share behaviors with the systems and
structures)
• may be emergent behaviors of the systems and structures (scenarios share attributes with the
systems and structures)

Scenario attributes include relational, hierarchical, unstructured and random data.  Scenario elements
compute relevance, and are abstracted as:

• Ontologies
• Taxonomies
• Categories (Chomsky)
• Agents (including external models)
• Rules

The holistic environment can be illustrated graphically as follows:

Attributes of systems, structures and scenarios are defined as categories mapped across relational,
hierarchical, unstructured, and random data sources.   Behaviors of systems, structures and scenarios
are defined as expressions that include static and / or dynamic variables and operators.

This real-world reasoning approach enables the construction of models that integrate highly diverse
elements and information sources to enable exploration and discovery to a scope that traditional
information architecture cannot accommodate.
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DATABASES
It is assumed that the readers have used and likely created a variety of databases during the course of
their education, career and perhaps other pursuits, and it is not the purpose of this text to teach the
fundamentals of computer science.  Therefore we will focus our review of database technology in this
section on the roles and limitations of databases from an analytics and informatics perspective. In
recent years, the emphasis and expectations associated with “big data” in literature, marketing and
professional activities have dominated the computing mind share in academic, business and
government circles.  Therefore we will give the majority of our attention in this section to understanding
the current and emerging technologies, architectures, and analytical approaches in this field, as well as
where it fits in the goal of informatics to bridge the gap between information and knowledge.

Roles
Information is data in a useful structure, which means that the structure allows computer algorithms to
access the data in a way that enables the program to accomplish the task for which it was designed. The
basic functionality of a database is data storage with read, write and edit capabilities. Commercial
database products are engineered to provide additional functionality around that structure based on
what the designers understand to be useful to the both the human and systemic actors that will be
connected to the database. That additional functionality includes, but is not limited to, processes and
tools for multiple user access capability, access control, security, configuration, integration,
customization, administration and procedures used by end users. The vast majority of the Total Cost of
Ownership (TCO) of a database product – purchase price, infrastructure, administration and
maintenance, etc. – is driven by the additional functionality and is designed around the requirements of
enterprise applications.  Informatics requirements are not identical to those of enterprise computing,
and we will address this in the Big Data subsection below.

The roles of a database can therefore be summarized as:

1. Store data
2. Maintain data
3. Enable users and programs to access the data

Limitations
The structure of today’s commercially available database products is relational.  From a scientific
perspective, however, that designation can be misleading, especially if people refer to databases and
ontologies in the same context.  Even when the use of the term ontology is limited to the structured
vocabularies of the semantic web, the relationships that are defined (e.g. subsumption) are meaningful
semantic relationships between the connected concepts.  A relational database structure allows
developers to define links between data tables by defining key fields and “relating” them to fields in
other tables, but these links provide no insight as to the real world relationships between the
information in the linked tables.

What the links do create are potential pathways that algorithms or queries can use to navigate between
tables, and yet this capability is also a key limitation of relational databases from an analytics and
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informatics perspective. These pathways are very analogous to roads and highways that are designed
for automobile traffic.  They enable standard vehicles (not off road) to get from point A to point B, but
the path is not always the most direct geographically, and you cannot drive to a location to which there
is no road.  In the same way, the fundamental limitations of relational databases when it comes to
transforming information into knowledge are:

1. The methods for abstracting, processing, and querying the data are limited to what is permitted
by the database schema

2. Relationships between data elements that are not on a defined path are invisible to algorithms

The impact of these limitations when working with a single database is that you can only use the data in
ways that have been foreseen by the database designers, and you can only query for what you know is
there.  However when multiple data sources are integrated into a single information infrastructure, the
result is the creation of information silos that present serious obstacles to knowledge capture and
discovery.

It is precisely these limitations of databases that have driven the development of search technologies
and engines.  However, the effectiveness of search is highly dependent on the ability of the searcher to
describe precisely what they are seeking. The more advanced search engines attempt to perform
relevance analysis and developers continue working on improving the semantic inference engines.

From an informatics perspective, search engines are an end user use case for a scientific ontology which
combines semantic, procedural and episodic context computation, and can be used to output tailored
search parameters for targeted problems and user groups.

Big Data
According to Wikipedia17, “In information technology, big data is a collection of data sets so large and
complex that it becomes difficult to process using on-hand database management tools. The challenges
include capture, curation, storage, search, sharing, analysis, and visualization.” At the time of this
writing, a Google search on “big data” yields over two billion results, and according to IBM18 “Every day,
we create 2.5 quintillion bytes of data — so much that 90% of the data in the world today has been
created in the last two years alone.”

It is therefore not surprising that science, business and government are struggling with the daunting
challenges of transforming rapidly scaling stores of “big data” into evidence-based, actionable
intelligence.  The limited achievements and unrealized expectations recorded thus far by leading
enterprises19 underscore the obstacles to interdisciplinary knowledge integration, which is critical to
discovery and value.

As discussed in the introduction to this chapter, the efforts by informatics professionals to translate the
exponential growth in data volume into information and utility have met with very limited success. The

17 http://en.wikipedia.org/wiki/Big_data
18 http://www-01.ibm.com/software/data/bigdata/
19 http://www.zdnet.com/fords-big-data-chief-sees-massive-possibilities-but-the-tools-need-work-7000000322
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fact that global enterprises with much larger budgets than informatics scientists find themselves in the
same predicament underscores the gravity of the challenges discussed in this chapter. We also
reviewed above the limitations of traditional database technology, and how these limitations not only
constrain knowledge capture and discovery, but create information silos within integrated
environments, and this is a particularly critical issue with big data environments because the data from
operational systems that populate the massive parallel processing platform may have undergone
various transformations across integrated systems.

Business Intelligence (BI) vendors are very conscious of these limitations, since the larger ones are also
database product developers.  Currently, they are seeking to leverage the “sandbox” data architecture
approach utilized effectively by the developers of geographical positioning software, to enable complex,
cross-platform query applications.  The key strategy involves combining the sandbox architecture with
in-memory analytics tools to break through the existing information barriers built over decades by
traditional system architecture implementations, as seen below:

In the diagram above from a whitepaper funded by the listed vendors, the green components represent
the future, but rather than depicting any new technology the architecture envisions new products and
services being developed as an additional layer of infrastructure to enable queries across information
silos. Nevertheless, there remain major limitations to the above described approach to acquiring
knowledge by combing data from diverse sources and running queries:

1. The presented approach does not address the combinatorial complexity issue which was
discussed in the systemic complexity section above.

2. Queries have a very limited capacity for knowledge acquisition and discovery.
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Addressing Impacts of Complexity
When it comes to attenuating the impacts of complexity, the sandbox architecture is important to the
relevance computing approaches presented earlier in this chapter because the data structure is
optimized for holistic access to data from multiple sources by algorithms and query tools. However, the
context engines discussed earlier which are needed to implement the cognitive methods for relevance
computation require something more - to access data stored in neural sandboxes. In a neural structure,
the data from multiple sources can not only be stored and accessed holistically, but it can also be
abstracted across multiple dimensions, including the creation of categories across data types and
dynamic categories that are dependent on values and formula outputs.

Creating the above described data environment enables a powerful method for addressing
computational complexity – staged processing integrated with relevance computation. As the scope of
the data scales, the combinatorial complexity is attenuated by the use of neural networks to minimize
data point and content redundancy and to enable the reuse of links, relationships, formalisms and other
components. The analytical engine can compute in stages and at each stage filter for relevance, and
then only needs to compute those paths found to be relevant, thus minimizing the computing resources
required. This approach can yield significant results for both the end user analytic capability
architecture (more details are set forth in the Knowledge Acquisition and Discovery heading below) and
the massive parallel processing architecture.

In a big data scenario, this approach can be used as follows:

1. Define a statistically valid sample of the source data sets and output to the neural sandbox.
2. Perform the staged processing integrated with relevance computation on the sample data and

identify the relevant paths.
3. Create an output file to be imported, or systematically pass the relevant paths specification to

the massive parallel processing platform (e.g. a Hadoop cluster) to process the available data
more efficiently or to increase the viable scope of the data processed.

The value of this approach scales with the complexity of the data, because parallel processing requires
breaking up the data into sections, creating in effect information silos within the processing
architecture.  If the data is very homogenous, then that may not be a problem.  However, in a more
typical scenario as illustrated in the diagram above, the complexity of the data will require multiple
iterations punctuated by analysis activities because each processing node is looking at a small subset of
the data.

To help deal with multiple data sources and types, some vendors have built, and others are building, a
mapping engine.  The above described approach could be used to improve the precision and streamline
the maintenance of the mappings.

Knowledge Acquisition and Discovery
Just as the large database vendors understand the limitations of their products, they also understand
that queries are very limited tools when it comes to knowledge acquisition and discovery. Jill Dyché, the
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Vice President of Thought Leadership at SAS, wrote20: “The common thread running through many of big
data's most promising explorations is discovery. Traditional database inquiry requires some level of
hypothesis, but mining big data reveals relationships and patterns that we didn't even know to look
for…These patterns are too specific and seemingly arbitrary to specify, and the analyst would be playing
a perpetual guessing-game trying to figure out all the possible patterns in the database. Instead, special
knowledge discovery software tools find the patterns and tell the analyst what--and where--they are."
She then sites as an example the fact that researchers at Stanford University were mining data on breast
cancer cells expecting to see trends in cell proliferation rates. But, to their surprise, they discovered that
surrounding non-cancerous cells are also contributing to cancer cell growth. The researchers who made
this discovery didn't know to look at the non-cancerous cells. But through low-hypothesis exploration,
they found it.

It is clear that traditional database inquiry is not enough, but the very example cited above shows that
simply identifying patterns is not capturing knowledge or discovery.  Finding the patterns is an
observation which is only the first step of the scientific method.  That observation leads to theories (e.g.
correlation versus causality) which need to be tested and iteratively refined by experimentation and
analysis, and the farther along that our computational environment advances the process the more real
knowledge acquisition and discovery is achieved.

On the other hand, using staged processing integrated with relevance computation in a desktop in-
memory environment allows analysts to do much more than observe patterns (which is clearly
important).  The process works as follows:

1. The analysts are presented navigation options that reflect the context architecture, allowing the
experts to specify what is relevant to their problem domain.

2. The selections are translated into relevant analysis paths and passed to the Hadoop cluster.
3. The relevant data is assembled and output to the neural sandbox.
4. The experts dynamically define scenarios and navigate all the relevant data, testing the value

and validity of the patterns, and exploring causal relationships, not just content similarities.

Criticality of Relevance Computation in Big Data
When the volume and complexity of the data puts exhaustive computation out of reach, the necessity of
computing relevance is evident.  However, relevance computation is not just a fallback position to cope
with scaling data, but is usually the critical path to an effective solution.  For example, the expression
“real-time decision support” is appearing with increasing frequency in discussions of “big data” issues
and objectives, but in the real world it is often an oxymoron.  Real-time information is only actionable
when it reports events for which all the following conditions exist:

1. the event is known and has been analyzed
2. a policy exists (i.e. a decision has already been made) for responding
3. a process exists to respond
4. resources have been allocated to respond

20 http://blogs.hbr.org/cs/2012/11/eureka_doesnt_just_happen.html
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A current study found that delivering operational information to Mobile BI users reduced average
decision time from 190 hours to 66 hours21.  While the improvement is significant, the results show that
after receiving the information, users still needed to make a significant investment of time and effort to
achieve utility – i.e. make a decision, and we have no data on how frequently the users decided that the
output did not really address the problem at hand.

Relevance analysis is a core element of problem analysis, which is all about asking the right questions, so
if a real-time solution is being considered, then the first question is: are we seeking to enable informed
decisions or automate implementation of decisions already made?   If large and complex data stores are
involved, the solutions for decision support and event management are usually mission-critical and
expensive propositions, and as a result relevance analysis is a critical success factor.

The impact of the relevance criticality is:

 the utility of information delivered for both discovery (research, event tracking, etc.) and
analysis (decision support, planning, etc.) is directly proportional to the granularity and precision
of the context architecture

 the total cost of ownership (TCO) is inversely proportional to the human expertise that is
embedded in the relevance analysis processes

Consequently, to the extent that context can be precisely architected and relevance correctly computed,
it increases the value and utility of the outputs and reduces the TCO.  This is possible because problem
analysis becomes an embedded driving force in operational and maintenance processes, not just a high-
level exercise at the beginning of a project.  System architects are well aware of the cost-of-errors
heuristic: errors not detected at the requirements stage cost ten times as much to repair at the design
and construction stage, and ten times more at the testing stage.  Defining requirements to solve the
wrong problems can add orders of magnitude to this painful reality, but relevance analysis is the critical
path to ensure that the solution assembles the correct data and methods to transform information into
knowledge, and knowledge into utility.

Addressing the challenges of complexity, expertise and dynamic scalability requires a new paradigm,
because as Einstein well put it, “You cannot solve problems using the thinking that caused them.”

Recent Initiatives
The focus that the White House Office of Science and Technology Policy (OSTP) has placed on materials
science as a potential key player in the efforts toward economic recovery has stimulated the creation of
many new Materials Genome initiatives, as well as the rebranding of existing ones.  Most of these,
however, have limited themselves to the Data and Information domains.  Two exceptions are the
Knowledge Engineering for Nanoinformatics Pilot (KENI) launched by the Nanoinformatics Society and a
collaborative Materials Genome Modeling Methodology initiative led by Iowa State University.

21 March 2012, Mobile BI 2012: Accelerating Business on the Move, Aberdeen Group
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Knowledge Engineering for Nanoinformatics
Funded by the NSF, the Nanoinformatics Society held its first conference in November 2010 with the aim
of bringing together a multidisciplinary group of experts and stakeholders to address the informatics
need of Nanotechnology. One of the workshop groups was tasked with scoping a pilot to address the
utility of data and information related to nanotechnology across a broad variety of potential users. The
group decided that this project would not be an exercise in consensus arbitration over definitions and
mappings.  Instead, the goal was to make validated knowledge and disciplinary expertise
understandable and computable so that the cross-disciplinary value can be made available and usable to
an array of stakeholders.  Achieving this goal requires the definition of a cognitive framework and
information architecture that is free from disciplinary and technological bias.  The KENI pilot addresses
this requirement by means of Computable Context Representation (CCR).

CCR is an innovative methodology which the KENI Pilot is using to model the complex and dynamic
relationships between the inputs (user types, disciplinary domains, analysis purpose, type & scope, etc.)
and the outputs (ontology engineering22 architectures, relevant data and sources, parameters,
quantitative methods, etc.).

The primary innovative value driver is the combination of:

 Defining a network of qualitative and quantitative concepts, the relevance of which is computed
based on user inputs

 Formalizing, and where possible, quantifying the interactions between concepts
 Leveraging cognitive architectures and principles to guide network design and relevance

computation

The initial focus was on toxicity prediction by applying the approach to linking chemistry, structure and
biology datasets.  These efforts were still underway at the time of this writing.

While all knowledge engineering efforts seek to incorporate elements of cognitive science, a key aspect
of CCR innovation is the driving role of a cognitive architecture that will be supported by appropriate
information architectures. The chart below summarizes the selected methods, with the cognitive focus
highlighted in the blue box.

22 Rajan, K., ONTOLOGY ENGINEERING: COMPUTATIONAL INFORMATICS FOR AN ICME INFRASTRUCTURE (2011)
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Rather than being an infrastructure-centric solution, the KENI is a portable and extensible architecture
which can be deployed within existing infrastructures, thus accelerating the path to utility and value
realization. There are many initiatives seeking to bridge the gap between massive and rapidly scaling
data stores and the potential value to be derived, and the pilot team created this summary of highly
visible initiatives (IBM Watson, LarKC and Wolfram Alpha) and the approaches taken in comparison to
Expertool knowledge engineering approach used by the KENI Pilot:

By 2011 the KENI pilot gained momentum, absorbed the activities of some other pilots, and was divided
into three subprojects, including the materials science focused Quantitative Structure Activity
Relationship (QSAR) subproject.  The outgrowth of the latter is the Iowa State University initiative that is
described in the following subsection.

Materials Genome Modeling Methodology at Iowa State University
The Combinatorial Sciences and Materials Informatics Collaboratory (CoSMIC) is an international
collaborative research program focused on data driven discovery in materials science using a genomics
discovery paradigm for materials design. Its central research theme is to develop new computational
and experimental ways of accelerated mechanistic based discovery and design of materials using
informatics methods. The program is directed by Professor Krishna Rajan of Iowa State University and
involves a network of laboratories in over ten countries.

On November 14, 2011 the White House Office of Science and Technology Policy announced on its blog
under the heading “Mapping the Materials Genome” as follows23:

Iowa State University, Los Alamos National Laboratory, and Ames Laboratory, in
partnership with a network of universities and industrial partners, will be initiating a series
of workshops starting in 2012 called “Mapping the Materials Genome”. These meetings are
focused on identifying the critical research challenges and establishing the experimental
and computational techniques by which the “Materials Genome” can in fact be realized.
Activities will also include short courses and educational materials to establish a network
for training the scientific workforce with the skills in “Materials Genomics”.

Among the computational techniques referred to above are the approaches based on knowledge
engineering that are described in this chapter, and they are being implemented and tested within the
Materials and Omics Modeling Platform research program jointly sponsored by CoSMIC and The
Expertool Paradigm, LLC.   This program is led by Professor Rajan and the author of this chapter, with

23 http://www.whitehouse.gov/blog/2011/11/14/support-grows-president-obama-s-materials-genome-initiative
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materials science and informatics expertise supplied by Iowa State and knowledge engineering expertise
and software tools provided by Expertool. The first output of this new program is a proof of concept
model to demonstrate the applicability of the knowledge engineering methods to the materials science
domain.  This proof of concept model is described in the following subsection, first from a materials
science perspective and then from a knowledge engineering perspective.  In the subsections that follow,
we will summarize how the methods described in this chapter were implemented to deal with the key
challenges of addressing complexity, computing relevance as well as capturing and automating human
expertise.

Materials Science Proof of Concept Model
The materials science domain selected for this proof of concept by the Iowa State team was apatite
crystal chemistry, and input data for the model was selected based on review of relevant literature. For
the selection of the compounds and the crystal symmetry (space group) of the compounds the literature
references are:

Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
Kendrick and Slater (2008) Sol State Ionic 179, 981-984.
Leon-Reina et al. (2003) Chem Mater 15, 2099-2109
Leon-Reina, L. et al. (2005) Chem. Mater. 17, 596-601
Orera et al. (2011) Fuel Cells. 11 10-16.
Pramana et al. (2008) J. Sol. State. Chem. 181, 1717-1722.
Sansom et al. (2005) Sol. State Ionics 176, 1765-1769
Rabe et al. (1992) Phys. Rev. B 45 7650-7676.
Shannon, R. D. (1976) Acta Cryst. A 32 751-767.

The input data for each compound was the following:

 At each of three sites (Lanthanum, Germanium and Oxygen), a quantitative measurement of
each of four properties (Zunger's Pseudopotential Core Radii Sum, Martynov-Batsanov
Electronegativity, Valence Electron Number and Shannon's Ionic Radius) for a total of eleven
measurements per compound (one property, Shannon’s Ionic Radius, did not apply at the
Oxygen site).

 A qualitative classification of crystalline structure (P-1, P63/m, or no apatite).

The data was organized into a table with each compound as row; each measurement was a column, text
columns for the structure class and literature reference, as shown below:
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The first step of modeling the data set was to specify formulas to dynamically compute the maximum
and minimum values of each measurement within each crystal symmetry structural category, along with

Compound Zunger's Pseudopotential Core Radii Sum at the La-siteMartynov-Batsanov Electronegativity at the La-siteValence Electron Number at the La siteZunger's Pseudopotential Core Radii Sum at the Ge-siteMartynov-Batsanov Electronegativity at the Ge-siteValence Electron Number at the Ge siteZunger's Pseudopotential Core Radii Sum at the O siteMartynov-Batsanov Electronegativity at the O siteValence Electron Number at the O siteShannon's Ionic Radius at La-siteShannon's Ionic Radius at Ge-siteCrystal Symmetry (Space Group) of the CompoundLiterature Reference
1 La9.5Ge4.5Al1.5O25.5 2.926 1.283 2.85 1.589 1.903 3.75 0.439 3.136 5.667 1.155 0.39 No apatite Leon-Reina, L. et al. (2005) Chem. Mater. 17, 596-600
2 La9.5Ge5Al1O25.75 2.926 1.283 2.85 1.579 1.932 3.833 0.443 3.166 5.722 1.155 0.39 No apatite Leon-Reina, L. et al. (2005) Chem. Mater. 17, 596-600
3 La9.4Ge5.5Al0.5O25.85 2.895 1.269 2.82 1.57 1.961 3.917 0.445 3.179 5.744 1.143 0.39 No apatite Leon-Reina, L. et al. (2005) Chem. Mater. 17, 596-600
4 Nd9.33Ge6O26 3.723 1.12 2.799 1.56 1.99 4 0.448 3.197 5.778 1.085 0.39 P-1 Orera et al. (2011) Fuel Cells. 11 10-16.
5 Pr9.33Ge6O26 4.18 1.026 2.799 1.56 1.99 4 0.448 3.197 5.778 1.1 0.39 P-1 Orera et al. (2011) Fuel Cells. 11 10-16.
6 La8Sr2Ge6O26 3.106 1.306 2.8 1.56 1.99 4 0.448 3.197 5.778 1.235 0.39 P63/m Pramana et al. (2008) J. Sol. State. Chem. 181, 1717-1722.
7 Nd8Sr2Ge6O26 3.834 1.186 2.8 1.56 1.99 4 0.448 3.197 5.778 1.192 0.39 P63/m Orera et al. (2011) Fuel Cells. 11 10-16.
8 Pr8Sr2Ge6O26 4.226 1.106 2.8 1.56 1.99 4 0.448 3.197 5.778 1.205 0.39 P63/m Orera et al. (2011) Fuel Cells. 11 10-16.
9 La8Ba2Ge6O26 3.144 1.296 2.8 1.56 1.99 4 0.448 3.197 5.778 1.267 0.39 P63/m Kendrick and Slater (2008) Sol State Ionic 179, 981-984.

10 La9.5Ge5.5Al0.5O26 2.926 1.283 2.85 1.57 1.961 3.917 0.448 3.197 5.778 1.155 0.39 P63/m Leon-Reina, L. et al. (2005) Chem. Mater. 17, 596-600
11 La9.33Ge4Ti2O26 2.874 1.26 2.799 1.9 1.947 4 0.448 3.197 5.778 1.135 0.4 P63/m Sansom et al. (2005) Sol. State Ionics 176, 1765-1768
12 La10Ge4Ga2O26 3.08 1.35 3 1.605 1.893 3.667 0.448 3.197 5.778 1.216 0.417 P-1 Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
13 La8Ba2Ge4Ti2O26 2.804 1.188 2.6 1.9 1.947 4 0.448 3.197 5.778 1.12 0.4 P63/m Sansom et al. (2005) Sol. State Ionics 176, 1765-1768
14 La8.67BaGe4Ti2O26 3.011 1.278 2.801 1.9 1.947 4 0.448 3.197 5.778 1.201 0.4 P63/m Sansom et al. (2005) Sol. State Ionics 176, 1765-1768
15 La8Y2Ge4Ga2O26 3.052 1.362 3 1.605 1.893 3.667 0.448 3.197 5.778 1.188 0.417 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
16 La9.33Si2Ge2Ti2O26 2.874 1.26 2.799 1.853 1.943 4 0.448 3.197 5.778 1.135 0.357 P63/m Sansom et al. (2005) Sol. State Ionics 176, 1765-1768
17 La9.33Ge3Ti3O26 2.874 1.26 2.799 2.07 1.925 4 0.448 3.197 5.778 1.135 0.405 No apatite Sansom et al. (2005) Sol. State Ionics 176, 1765-1768
18 La9.33Ge3Ti3O26 2.874 1.26 2.799 2.07 1.925 4 0.448 3.197 5.778 1.135 0.405 No apatite Sansom et al. (2005) Sol. State Ionics 176, 1765-1768
19 La9.33Ge3Ti3O26 2.874 1.26 2.799 2.07 1.925 4 0.448 3.197 5.778 1.135 0.405 No apatite Sansom et al. (2005) Sol. State Ionics 176, 1765-1768
20 La9.6Ge5.5Al0.5O26.15 2.957 1.296 2.88 1.57 1.961 3.917 0.45 3.215 5.811 1.167 0.39 P63/m Leon-Reina, L. et al. (2005) Chem. Mater. 17, 596-600
21 La8.4Ba1.6Ge6O26.2 3.132 1.307 2.84 1.56 1.99 4 0.451 3.222 5.822 1.257 0.39 P63/m Kendrick and Slater (2008) Sol State Ionic 179, 981-984.
22 La8Y2Ge4.4Ga1.6O26.2 3.052 1.362 3 1.596 1.913 3.733 0.451 3.222 5.822 1.188 0.411 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
23 La10Ge4.5Ga1.5O26.25 3.08 1.35 3 1.594 1.918 3.75 0.452 3.228 5.833 1.216 0.41 P-1 Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
24 La9.67Ge5.5Al0.5O26.255 2.978 1.305 2.901 1.57 1.961 3.917 0.452 3.228 5.834 1.176 0.39 P-1 Leon-Reina, L. et al. (2005) Chem. Mater. 17, 596-600
25 La9.52Ge6O26.28 2.932 1.285 2.856 1.56 1.99 4 0.453 3.231 5.84 1.158 0.39 P63/m Leon-Reina et al. (2003) Chem Mater 15, 2099-2108
26 La9.54Ge6O26.31 2.938 1.288 2.862 1.56 1.99 4 0.453 3.235 5.847 1.16 0.39 P63/m Leon-Reina et al. (2003) Chem Mater 15, 2099-2108
27 La8.55Y1Ge6O26.33 2.927 1.295 2.865 1.56 1.99 4 0.453 3.238 5.851 1.147 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
28 La6.55Y3Ge6O26.33 2.899 1.307 2.865 1.56 1.99 4 0.453 3.238 5.851 1.119 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
29 La9.56Ge6O26.34 2.944 1.291 2.868 1.56 1.99 4 0.454 3.239 5.853 1.162 0.39 P63/m Leon-Reina et al. (2003) Chem Mater 15, 2099-2108
30 La9.58Ge6O26.37 2.951 1.293 2.874 1.56 1.99 4 0.454 3.243 5.86 1.165 0.39 P63/m Leon-Reina et al. (2003) Chem Mater 15, 2099-2108
31 La9.75Ge5.5Al0.5O26.375 3.003 1.316 2.925 1.57 1.961 3.917 0.454 3.243 5.861 1.186 0.39 P-1 Leon-Reina, L. et al. (2005) Chem. Mater. 17, 596-600
32 La9.6Ge6O26.4 2.957 1.296 2.88 1.56 1.99 4 0.455 3.246 5.867 1.167 0.39 P63/m Leon-Reina et al. (2003) Chem Mater 15, 2099-2108
33 La8.8Ba1.2Ge6O26.4 3.119 1.318 2.88 1.56 1.99 4 0.455 3.246 5.867 1.246 0.39 P63/m Kendrick and Slater (2008) Sol State Ionic 179, 981-984.
34 La8Y2Ge4.8Ga1.2O26.4 3.052 1.362 3 1.587 1.932 3.8 0.455 3.246 5.867 1.188 0.406 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
35 La8.63Y1Ge6O26.45 2.952 1.306 2.889 1.56 1.99 4 0.456 3.252 5.878 1.157 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
36 La7.63Y2Ge6O26.45 2.938 1.312 2.889 1.56 1.99 4 0.456 3.252 5.878 1.143 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
37 La6.63Y3Ge6O26.45 2.924 1.318 2.889 1.56 1.99 4 0.456 3.252 5.878 1.129 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
38 La9.8Ge5.5Al0.5O26.45 3.018 1.323 2.94 1.57 1.961 3.917 0.456 3.252 5.878 1.192 0.39 No apatite Leon-Reina, L. et al. (2005) Chem. Mater. 17, 596-600
39 La9.66Ge6O26.49 2.975 1.304 2.898 1.56 1.99 4 0.456 3.257 5.887 1.175 0.39 P-1 Leon-Reina et al. (2003) Chem Mater 15, 2099-2108
40 La9SrGeO26.5 3.093 1.328 2.9 1.56 1.99 4 0.456 3.259 5.889 1.225 0.39 P-1 Pramana et al. (2008) J. Sol. State. Chem. 181, 1717-1722.
41 La10Ge5Ga1O26.5 3.08 1.35 3 1.583 1.942 3.833 0.456 3.259 5.889 1.216 0.403 P-1 Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
42 La9BaGe4Ti2O26.5 3.112 1.323 2.9 1.9 1.947 4 0.456 3.259 5.889 1.241 0.4 P63/m Sansom et al. (2005) Sol. State Ionics 176, 1765-1768
43 La9BaSi2Ge2Ti2O26.5 3.112 1.323 2.9 1.853 1.943 4 0.456 3.259 5.889 1.241 0.357 P63/m Sansom et al. (2005) Sol. State Ionics 176, 1765-1768
44 La9.68Ge6O26.52 2.981 1.307 2.904 1.56 1.99 4 0.457 3.261 5.893 1.177 0.39 P-1 Leon-Reina et al. (2003) Chem Mater 15, 2099-2108
45 La9.7Ge6O26.55 2.988 1.31 2.91 1.56 1.99 4 0.457 3.265 5.9 1.18 0.39 P-1 Leon-Reina et al. (2003) Chem Mater 15, 2099-2108
46 La8.71Y1Ge6O26.57 2.977 1.317 2.913 1.56 1.99 4 0.458 3.267 5.904 1.167 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
47 La7.71Y2Ge6O26.57 2.963 1.323 2.913 1.56 1.99 4 0.458 3.267 5.904 1.153 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
48 La6.71Y3Ge6O26.57 2.949 1.329 2.913 1.56 1.99 4 0.458 3.267 5.904 1.138 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
49 La9.72Ge6O26.58 2.994 1.312 2.916 1.56 1.99 4 0.458 3.268 5.907 1.182 0.39 P-1 Leon-Reina et al. (2003) Chem Mater 15, 2099-2108
50 La9.2Ba0.8Ge6O26.6 3.106 1.328 2.92 1.56 1.99 4 0.458 3.271 5.911 1.236 0.39 P63/m Kendrick and Slater (2008) Sol State Ionic 179, 981-984.
51 La8Y2Ge5.2Ga0.8O26.6 3.052 1.362 3 1.578 1.951 3.867 0.458 3.271 5.911 1.188 0.401 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
52 La9.74Ge6O26.61 3 1.315 2.922 1.56 1.99 4 0.458 3.272 5.913 1.184 0.39 P-1 Leon-Reina et al. (2003) Chem Mater 15, 2099-2108
53 La9.75Ge6O26.625 3.003 1.316 2.925 1.56 1.99 4 0.459 3.274 5.917 1.186 0.39 P-1 Leon-Reina et al. (2003) Chem Mater 15, 2099-2108
54 La7.55Y2Ge6O26.33 2.913 1.301 2.865 1.56 1.99 4 0.459 3.275 5.918 1.133 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
55 La8.79Y1Ge6O26.69 3.001 1.328 2.937 1.56 1.99 4 0.46 3.282 5.931 1.176 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
56 La7.79Y2Ge6O26.69 2.987 1.334 2.937 1.56 1.99 4 0.46 3.282 5.931 1.162 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
57 La6.79Y3Ge6O26.69 2.973 1.34 2.937 1.56 1.99 4 0.46 3.282 5.931 1.148 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
58 La9.4Ba0.6Ge6O26.7 3.099 1.334 2.94 1.56 1.99 4 0.46 3.283 5.933 1.231 0.39 P63/m Kendrick and Slater (2008) Sol State Ionic 179, 981-984.
59 La9.6Ba0.4Ge6O26.8 3.093 1.339 2.96 1.56 1.99 4 0.462 3.295 5.956 1.226 0.39 P-1 Kendrick and Slater (2008) Sol State Ionic 179, 981-984.
60 La8Y2Ge5.6Ga0.4O26.8 3.052 1.362 3 1.569 1.971 3.933 0.462 3.295 5.956 1.188 0.395 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
61 La8.87Y1Ge6O26.81 3.026 1.338 2.961 1.56 1.99 4 0.462 3.297 5.958 1.186 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
62 La7.87Y2Ge6O26.81 3.012 1.344 2.961 1.56 1.99 4 0.462 3.297 5.958 1.172 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
63 La6.87Y3Ge6O26.81 2.998 1.35 2.961 1.56 1.99 4 0.462 3.297 5.958 1.158 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
64 La8.95Y1Ge6O26.93 3.051 1.349 2.985 1.56 1.99 4 0.464 3.311 5.984 1.196 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
65 La7.95Y2Ge6O26.93 3.037 1.355 2.985 1.56 1.99 4 0.464 3.311 5.984 1.182 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
66 La6.95Y3Ge6O26.93 3.023 1.361 2.985 1.56 1.99 4 0.464 3.311 5.984 1.168 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
67 La10Ge6O27 3.08 1.35 3 1.56 1.99 4 0.465 3.32 6 1.216 0.39 P-1 Pramana et al. (2007) Acta Cryst. B63, 597-602.
68 La10Ge6O27 3.08 1.35 3 1.56 1.99 4 0.465 3.32 6 1.216 0.39 P-1 Pramana et al. (2007) Acta Cryst. B63, 597-602.
69 La10Ge6O27 3.08 1.35 3 1.56 1.99 4 0.465 3.32 6 1.216 0.39 P-1 Pramana et al. (2007) Acta Cryst. B63, 597-602.
70 Nd10Ge6O27 3.99 1.2 3 1.56 1.99 4 0.465 3.32 6 1.163 0.39 P-1 Orera et al. (2011) Fuel Cells. 11 10-16.
71 Pr10Ge6O27 4.48 1.1 3 1.56 1.99 4 0.465 3.32 6 1.179 0.39 P-1 Orera et al. (2011) Fuel Cells. 11 10-16.
72 La8Yb2Ge6O27 3.182 1.3 3 1.56 1.99 4 0.465 3.32 6 1.181 0.39 P63/m Orera et al. (2011) Fuel Cells. 11 10-16.
73 La8Yb2Ge6O27 3.182 1.3 3 1.56 1.99 4 0.465 3.32 6 1.181 0.39 P63/m Orera et al. (2011) Fuel Cells. 11 10-16.
74 La8Yb2Ge6O27 3.182 1.3 3 1.56 1.99 4 0.465 3.32 6 1.181 0.39 P63/m Orera et al. (2011) Fuel Cells. 11 10-16.
75 La8Gd2Ge6O27 3.246 1.3 3 1.56 1.99 4 0.465 3.32 6 1.194 0.39 P-1 Orera et al. (2011) Fuel Cells. 11 10-16.
76 La8Sm2Ge6O27 3.292 1.32 3 1.56 1.99 4 0.465 3.32 6 1.199 0.39 P-1 Orera et al. (2011) Fuel Cells. 11 10-16.
77 La8Nd2Ge6O27 3.262 1.31 3 1.56 1.99 4 0.465 3.32 6 1.205 0.39 P-1 Orera et al. (2011) Fuel Cells. 11 10-16.
78 Nd8Y2Ge6O27 3.78 1.242 3 1.56 1.99 4 0.465 3.32 6 1.145 0.39 P-1 Orera et al. (2011) Fuel Cells. 11 10-16.
79 Pr8Y2Ge6O27 4.172 1.162 3 1.56 1.99 4 0.465 3.32 6 1.158 0.39 P-1 Orera et al. (2011) Fuel Cells. 11 10-16.
80 La6Y4Ge6O27 3.024 1.374 3 1.56 1.99 4 0.465 3.32 6 1.16 0.39 P-1 Orera et al. (2011) Fuel Cells. 11 10-16.
81 La9.83Ge5.5Nb0.5O27 3.028 1.327 2.949 1.66 1.993 4.083 0.465 3.32 6 1.195 0.398 P63/m Orera et al. (2011) Fuel Cells. 11 10-16.
82 La9.83Ge5.6Nb0.4O26.95 3.028 1.327 2.949 1.64 1.993 4.067 0.464 3.314 5.989 1.195 0.396 P63/m Orera et al. (2011) Fuel Cells. 11 10-16.
83 La9.83Ge5.7Nb0.3O27 3.028 1.327 2.949 1.62 1.992 4.05 0.463 3.308 5.978 1.195 0.395 P63/m Orera et al. (2011) Fuel Cells. 11 10-16.
84 La9.83Ge5.8Nb0.2O27 3.028 1.327 2.949 1.6 1.991 4.033 0.462 3.302 5.967 1.195 0.393 P63/m Orera et al. (2011) Fuel Cells. 11 10-16.
85 La9.83Ge5.9Nb0.1O27 3.028 1.327 2.949 1.58 1.991 4.017 0.462 3.295 5.956 1.195 0.392 P63/m Orera et al. (2011) Fuel Cells. 11 10-16.
86 La10Ge5.5Ti0.5O27 3.08 1.35 3 1.645 1.979 4 0.465 3.32 6 1.216 0.393 P-1 Orera et al. (2011) Fuel Cells. 11 10-16.
87 La8Y2Ge5Ti1O27 3.052 1.362 3 1.73 1.968 4 0.465 3.32 6 1.188 0.395 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 3627-3632.
88 La10Ge4.5Ti1.5O27 3.08 1.35 3 1.815 1.958 4 0.465 3.32 6 1.216 0.398 P63/m Orera et al. (2011) Fuel Cells. 11 10-16.
89 La9Y1Ge6O27.005 3.066 1.356 3 1.56 1.99 4 0.465 3.32 6 1.202 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
90 La8Y2Ge6O27.005 3.052 1.362 3 1.56 1.99 4 0.465 3.32 6 1.188 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
91 La7Y3Ge6O27.005 3.038 1.368 3 1.56 1.99 4 0.465 3.32 6 1.174 0.39 P63/m Kendrick and Slater (2008) Mat Res. Bull. 43, 2509-2513.
92 La10Ge5.9W0.1O27.1 3.08 1.35 3 1.58 1.987 4.033 0.467 3.332 6.022 1.216 0.391 P63/m Orera et al. (2010) Dalton Trans. Doi: 10.1039/c0dt00690d
93 La10Ge5.8W0.2O27.2 3.08 1.35 3 1.599 1.983 4.067 0.468 3.345 6.044 1.216 0.391 P63/m Orera et al. (2010) Dalton Trans. Doi: 10.1039/c0dt00690d
94 La10Ge5.7W0.3O27.3 3.08 1.35 3 1.619 1.98 4.1 0.47 3.357 6.067 1.216 0.392 P63/m Orera et al. (2010) Dalton Trans. Doi: 10.1039/c0dt00690d
95 La10Ge5.6W0.4O27.4 3.08 1.35 3 1.638 1.977 4.133 0.472 3.369 6.089 1.216 0.392 P63/m Orera et al. (2010) Dalton Trans. Doi: 10.1039/c0dt00690d
96 La10Ge5.4W0.6O27.6 3.08 1.35 3 1.678 1.97 4.2 0.475 3.394 6.133 1.216 0.393 No apatite Orera et al. (2010) Dalton Trans. Doi: 10.1039/c0dt00690d
97 La10Ge5.3W0.7O27.7 3.08 1.35 3 1.697 1.967 4.233 0.477 3.406 6.156 1.216 0.394 No apatite Orera et al. (2010) Dalton Trans. Doi: 10.1039/c0dt00690d
98 La10Ge5.2W0.8O27.8 3.08 1.35 3 1.717 1.963 4.267 0.479 3.418 6.178 1.216 0.394 No apatite Orera et al. (2010) Dalton Trans. Doi: 10.1039/c0dt00690d
99 La10Ge5.4Nb0.6O27.3 3.08 1.35 3 1.68 1.994 4.1 0.47 3.357 6.067 1.216 0.399 No apatite Orera et al. (2011) Fuel Cells. 11 10-16.

100 La10Ge5.35Nb0.65O27.3 3.08 1.35 3 1.69 1.994 4.108 0.471 3.36 6.072 1.216 0.4 No apatite Orera et al. (2011) Fuel Cells. 11 10-16.
101 La10Ge5.3Nb0.7O27.3 3.08 1.35 3 1.7 1.995 4.117 0.471 3.363 6.078 1.216 0.401 No apatite Orera et al. (2011) Fuel Cells. 11 10-16.
102 La10Ge5.5W0.5O27.5 3.08 1.35 3 1.658 1.973 4.167 0.474 3.381 6.111 1.216 0.393 P63/m Orera et al. (2010) Dalton Trans. Doi: 10.1039/c0dt00690d
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the maximum and minimum values for the entire sample, or for those of a user selected subset of the
sample. Since the calculations were set to be dynamic, the maximum and minimum values would be
updated if any of the source data was refreshed with changed values, or if new rows with additional
compounds were added to the table.

The calculation of the maximum and minimum value outputs enabled a user to browse for structure /
measurement pairs where the range was small compared to that for the entire sample. This indicated
how consistent a predictor the structural category was of the quantitative measurement.

The next step of constructing the model was to list each combination of structure, site and
measurement and to set each combination as a results category.

The final quantitative step was to compute for each structure / measurement pair the ratio of the
number of compounds with the given structure to the total number of compounds in the entire sample
where the specified measurement fell into the range for that structural category. This indicated how
consistent a predictor the quantitative measurement was of the structural category.

To facilitate the reading and analysis of the data, the distribution of compounds across results categories
with their associated literature references were output to additional windows.  The model viewer
navigation windows were created and the navigation configuration properties were set to enable the
user to browse the results ether of two ways:

 STRUCTURE DRIVEN – A structure is selected, and for each of the eleven measurements the
following information is displayed: the maximum and minimum values for the structural
category, the maximum and minimum values of the entire sample (for comparison), and the
ratio defined in the final quantitative step.
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 PROPERTY DRIVEN – A site and a property were selected, and for each structural category the
same information was displayed as above. (The maximum and minimum values of the selected
measurement for the entire sample were of course only displayed once.)

The “Pred. Value – Structure” window displays the range the property has for the given structure, as a
percentage of the overall range of the property across the sample.  The smaller the range, the more
predictive the structure is of the property.

The “Pred. Value – Property” window displays the number of compounds with the structure, as a
percentage of all compounds where the property falls in the range for the structure.  The larger the
percentage, the more predictive the property is of the structure.

A more advanced analysis that was not included in this proof of concept would have been to select a
structural category and multiple measurements, and compute the ratio of the number of compounds in
the category to the total within the range on all selected measurements. This could have indicated that
two or more measurements together are a predictor of structure. A good candidate for this analysis
would be where a structure was found to be a good predictor of two or more measurements. No such
candidate was present in the sample data used for this model.

The above proof of concept model was scoped to be simple enough to follow, while demonstrating
some aspects of how the three key challenges discussed earlier – addressing complexity, computing
relevance, capturing and automating human expertise – are being tackled by the Materials and Omics
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Modeling Platform research program, using the methods described in this chapter implemented in the
Expertool Universal Knowledge Modeling platform.

• Database perspective – the table created as input data is a simple database, but from a
methodology perspective represents an array of potential online and offline data sources.

• Ontology perspective – the data is imported into the Expertool neural sandbox structure,
making each data point available to behave as a concept or an attribute, depending on how
it is contextually categorized by the engine during an analysis.

• Relevance computation perspective – each concept in the ontology has a relevance state
(Yes, No or Possible) which is computed at run time by a combination of defined links,
available data and user inputs.  Each concept has a quantitative state, which is a set of
populated and/or computed values which are utilized by the engine as part of the relevance
computation.

• Capturing human expertise perspective – in this simple model human expertise was
captured first by the use of a data set that was scoped and assembled by cognitive scientists
and then by the modeling methods and formulas contributed by the knowledge engineers.
This model can now be used as a component of a more comprehensive model or as an agent
that interacts with other models.

The scope of the data of this proof of concept is limited, but it can grow without architectural limitations
by adding rows to the initial table or adding other tables with related content and defining relationships
and interactions that cannot be deduced from the content.  The relationships that can be deduced will
be identified and updated by the software.

As the scope of the data scales, the combinatorial complexity is attenuated by the use of neural
networks to minimize data point and content redundancy and to enable the reuse of links, relationships,
formalisms and other components. The Expertool engine computes in stages and at each stage filters for
relevance, and only computes those paths found to be relevant, thus minimizing the computing
resources required.

As described in the Database section above, in a “big data” scenario, this approach can be used to
process a statistically valid sample of the data and identify the relevant paths, which are then passed to
the multi-node processing platform (e.g. a Hadoop cluster) to process the available data more
efficiently, or in increase the viable scope of data.

The knowledge captured in the model can be dynamically explored in the viewer interface shown in the
screen shots above, or accessed by external systems via the API, delivering tailored outputs based on a
received set of parameters. The models created by CoSMIC and Expertool will be used to create a
dynamic interaction environment for research and discovery using the Models as Agents methodology
described earlier.
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Conclusion
The prospects associated with materials science and big data are driving high expectations for solutions
to perplexing problems and for economic opportunity.  However, the realization of these expectations is
dependent on creating real value by acquiring knowledge and engineering utility of that knowledge, not
by simply accumulating even greater stores of data than that which is overwhelming us today.

To achieve this value informatics practitioners need databases and ontologies.  Databases are tools for
transforming data into information by putting it in an accessible structure, whereas ontologies are tools
for transforming information into knowledge by modeling it in a useful context.  Therefore, databases
are not platforms for knowledge acquisition and discovery, but rather input sources for knowledge
platforms which include ontologies and appropriate engines for their utilization.

Unlike semantic web ontologies that are vocabularies modeled to support search and inference engines,
ontologies for scientific research and discovery need to:

 Model the scientific context of the defined concepts
 Model semantic, procedural and episodic abstractions, including quantitative and qualitative

elements in a holistic environment,  to reflect human knowledge
 Enable chaotic and stochastic interactions at the concept and attribute levels for theory

simulation and testing

While the above described approach represents a significant departure from the status quo, it is not
based on new theories, but rather on a holistic perspective of the issues and challenges by combining
established principles of the computing sciences, cognitive science, complexity theory and engineering
disciplines in harmony with the emerging discipline of knowledge engineering.
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